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Abstract—In this paper, by the method

called ”asymptotic contractive process” on the timedependent

using
entire space, the existence of time-dependent attractor for
the wave equation with decay coefficienton H'@")xL*(0 ")is
obtained.
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1 Introduction

We onsider the asymptotic behavior of solutions to the
following equations on[®:

{e(t)utt +au, —Au+Au+ f(x,u)=g(x),xel®t>r,

s (1.1)
u(x,7) =uy(x),u,(x,7) =u,(x),x 0,

where u(x,t) is an unknown function, 1>0,e=¢(t) is a

decreasing bounded function and

lim&(t) =o0. (1.2)
Especially, there exists a constant L >0 such that
fqp[l @]+ ®N<L. (1.3)

The nonlinear term f(x,s)eC(*) with f(x,)eC?(C) for
every fixed x e *, and satisfies

f(,0) e L*(U 3),%(x,0) I<c,,¥xell?, (1.4)

|%(x,~) |< cl(l+|s|2),|%(~,s) I<c,,Vsell,xell® (15)

liminf & (%:8)

[s]—>o0

>-A,vsell,xel?, (1.6)

(f(x,8)—f(x,0)) >c,;s°,Vsel,|x[>r, >0, .7
where ¢ >0,i=0,1,2,3,4 is the first eigenvalue of the
operator A=-A
Equation (1.1) can be seen as a nonlinear damped wave
equation with time-dependent speed of
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propagation%. Besides, it can also be regarded as a
&

model for the thermal evolution in ahomogeneous isotropic
(rigid) heat conductor according to the Maxwell-Cattaneo
law [8] (see also [12, AppendixB]), with £(t) representing
a time-dependent relaxation parameter.

When ¢ is only a positive constant in (1.1), the
asymptotic behavior of solutions to equation (1.1) on
bounded domains has been the object of extensive studies
since the eighties (see,e.g. [8 — 16]).

For equation (1.1), in [1], Conti, Pata and Temam
presented a notion of time-dependent attractor exploiting
the minimality with respect to the pullback attraction
property, and constructed a sufficient condition proving the
existence of time-dependent attractor based on the theory
established by Plinio, Duane and Temam([5]). Meanwhile,
within the new framework, on bounded domain, the authors
studied the following weak damped wave equations with
time-dependent speed of propagation

e(t)u, +au, —Au+ f(U)=g(x),xeQc0? (1.8)
in particular, they proved that the time-dependent global
attractor of (1.8) converged in a suitable sense to the
attractor of the parabolic equation ou, —Au+ f(u)=g(x)
when &(t) >0 ast—+wo ([2]). Successively, in[3], they
continued to show the existence of an invariant
time-dependent global attractor to the following specific
one-dimensional wave equation
e(t)u, —u, +[L+ef'(u)y, + f(U)=h, which converges in
suitable sense to the classical Fourier equation.

Recently, Meng et al. investigated the long-time
behavior of the solution for the wave equation with
nonlinear damping g(u,) on the time-dependent space, in
which they found a new technical method verifying
compactness of the process via defining the contractive
functions, see [6]. In [7], Meng and Liu also showed the
necessary and sufficient conditions of the existence of
time-dependent global attractor borrowed from the ideas in

[17].
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However, all researches about the time-dependent
attractor were on bounded domain. In the recent, the authors
gave a method called”asymptotic contractive process’to
prove that the process is pullback asymptotic compactness
on unbounded domian ([18]). So in this paper, we
exploiting this new method to show the existence of
time-dependent attractor for (1.1) on unbounded domain.

The rest of this article consists of four Sections. In the
next Section, we define some functions sets and iterate
some useful lemmas; in Section 3, we introduce the concept
of asymptotic contractive process and a technique for
verifying asymptotic compactness for the process is
proposed; finally, dissipativity, tail estimate and the
existence of the time-dependent global attractor is obtained

on*in Section 4.

2 Preliminaries

Now we recall some basic notations and abstract
results in[1,6,18], which are necessary for getting our main
results.

2.1 Notations.
Without loss of generality, set H=1*(@C"), endowed with the
inner product (-,-yand normi i , respectively. For0<s<2,

we define the hierarchy of nested Hilbert spaces

H® = H (0 ") = D(A2),(w, V), = (A2w, A2V)]l wil 2= ( A2w, A2w).

Now, for teD and 0<s<2 , write the following
symbols,
HtS:HS+1XHS

1

with the norm

+e®l ull 2.

s+1

2 2 2
Il 2 (ui 24l

The letter s is always omitted whenever zero. Especially, we
consider the time-dependent phase space

H =H'xH,
with the norm
Lz 2  u 7 A ul 2+ ull 24 vl 2 Hull? +e(O ull 2,
For everytel , let X be a family of normed spaces, we
introduce the p - ball of X,

B.(p)={ze Xl X‘Sp}.

We denote the Hausdorff semi-distance of two (nonempty)
sets B,C e X, by

6,(B,C) =supdist, (x,C)=supinfll x—yll ,

xeB xeB Y€€

27
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For any giveno>0, the o—neighbourhood of a set B c X, is

defined as

0/(B) =y e Xy, <&=J{x+B,©}.

xeB xeB

2.2 Some concepts and abstract results.

Definition 2.1. ([1]). Let{X3}_, >0be a family of
normed spaces. A process is a two-parameter family of
mappings {U(t,7): X, — X,,t >z e0}with properties
(i()U(z,7) = Id is the identity on X _,z €0 ;

(iU, s)U(s,7)=U(t,7),Vt=s>7

Definition 2.2. ([1]). A family c={C},_, of bounded
setsC, — X, is called uniformly bounded if there exists a
constant p > 0such thatC, = B,(p), vt el |

Definition 2.4. ([1]). A (uniformly bounded) family
K={K}.. is called pullback attracting if for allo>0 the
family {0 (K,)},... is pullback absorbing.

Definition 2.5. ([1]). The time-dependent global
attractor foru (t,z) is the smallest family A ={A},_, with the
following properties:

(i) Each A compact in X, ;
(ii) A is pullback attracting, namely, it is uniformly bounded
and the limit

lim §,U7)C,,A) =0,

holds for every uniformly bounded family c={C},_, and
everytell .

Theorem 2.6. ([1]). The time-dependent attractor A
exists and it is unique if and only if the processu (t,z)is
asymptotically compact, namely, the set

K={K={K}.., : K, = X,compact, Kpullbackattracting} = &.

Definition 2.7. ([17]). Let{X,},.. be a Banach space and
C={C}., be a family of uniformly bounded subset of
{X.}.., - We call a functiony!(,-) defined on{X.},_, x{X.}.
to be a asymptotic contractive function onC, xC,, if for any
ted and any sequence{x }., c C,, such that for anyo>0,
there is a subsequence{x, };_, ={x,};, satisfying:

WXy %, ) SO+ (X, X, )

where

imlimg!(x, ,x,)=0,7 <t.

|
k>0 |20

Definition 2.8. ([17]). LetU(.-) be a process on{X},_.
and for any o> 0 there exist 7 <T(0) <t,ys €C(C;), such that
TUET)x-U@ETIV  <o+yp7(XY),¥X,yeCy,
for any fixed ted . Then U(,) is called asymptotic

contractive process.
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Theorem 2.9. ([17]). LetU(,-) be a process in a family
of Banach space{X,},_, . ThenU(.-)has a time-dependent
global attractor U ={A’},_, in {X,}_, provided that the
following conditions hold true:

(i) V() has a pullback absorbing family B ={B},_. ;
(if) U(.-)is pullback asymptotic contractive process on B, .

Let
Foou) = [ F(x y)dy.
Lemma 2.10. ([10,11]). From (1.4), (1.6)—(1.7), for
O<v<minfl, A}, there exist a(v)>0,c(v)>0(i=12), such
that the following inequalities hold for everyu e H':

2(F(x,u),1y > -l ul 2 —c(v), (2.1)

<f(x,u),u>+?l vl 2= a@)l ull 2 —c(v). (2.2)
3 Dissipativity

Global existence of solutionu to (1.1) is classical, by
using the standard Galerkin approximation method ([1, 12,
16]), so we only give the following results and omit the
proof.

Lemma 3.1. Under the assumptions(i.2)—(1.7), for
every pair of initial dataz_eH_, ge*(C?), there exists a
unique solution z(t) = (u,u,) of problem (1.1) in space H, and
satisfy

2 eC([z.t];H,) N L*([z,t);HY).
Furthermore, let z(z)eH, be the initial data such that
I z(o, <p(i=12), and z(t) be the solution of problem
(1.1). Then there exists K = K(p) >0, such that
I 2,(t) -z, , <N 7,(r) - z,(DN , Vi=7.

(3.1)

Lemma 3.2. Under the assumptions(1.2)—(1.7),
gel?C?), for any initial dataz_ B, (0,) cH,, there exists
p>0,such that

Ty oz, <p V<t

Proof Multiplying (1.1) byv=u, +su and integrating

over®, we obtain

d
aE(t)+|(t):O, (3.2)
where
E@)H Vull >+ Ul 2 +gll vl 2 +2(F(x,u),1) —2(g,u,
1(t) = (2(a - e (t)) — & (ON vl > 2381 Vull 2 +252 ull 2
=26 (a — Se(t)){u,v) + 25( f (x,u),uy — 25(g, u),
28

ISSN: 2394-3661, Volume-8, Issue-6, June 2021

integrating (3.2) over[z,t], there holds
E(t)=— j' I (s)ds + E(2). (3.3)

Let0<s < min{%, A+ 4A(v)

1}, such that
o

% —265(t) > é‘g(t),g& +2687(v) — 8% > S,
then by (2.2), Holder, Young inequalities, we obtain

1) > 5@ =)l Vull 2 4252 + A ul 2 +(2a — 256N Wl 2
(VI ? +5%l Ul ) — (i;u ul 2 +2—fu gl ) - 26,

> sul Vull ? +(§51 £ 267(v) — 5l Ul ? +(a—25(O) MIZ (3.4)
_% gl 2 —25¢,

>Svll Vull 2l ull 2 +e(t)l Wi 2)+%|| Vil 2 —z—fu gll 2 —25¢,,
combining with (2.2) there holds

E(t) 4 vull 2 +(%z —v)l ull 2 +e@ll i 2 —(%u gl % +c,)

4 (3.5)
zgu VUL U (O W) - Gl ol ),
Together with (3.3), (3.4)—(3.5) it follows that
Y vl 2 4 ull 2 ()l vl 2)—m,
’ (3.6)

<[ :[M VUl 2 4 ull 2 +e(0l vl 2) —m, ]dr + E(z),

where ml:(%ll gII2+c1),m2:2—jll gl >+2sc, . So, for any

2> % , there exists t, > 7 such that
Vv
I VUl 2 Al ugt 2 +e(t, ) vt %< pp.

As aresult, let B =(_Ju(t,7)B, , where

e
B, ={(Uy, ) € H_Il ugll 2 +£(2)l ull 2< p.3,
then B, is a bounded absorbing set for process{U (t,z)}.

On the other hand, from the above discussion, there
exist a positive constant p such that

| ull 2 4@l ull2< p, vt >t > 7. 0

From Lemma 4.2, we can get the following
conclusion:

Lemma 3.3. Under the assumptions(1.2)—(1.7), for
>0 in Lemma 4.2, such that B={B (o)} is a
time-dependent absorbing sets for the process {U(t,z)}
associated with (1.1) then for some R, > p, , there have

sup { Ut n)z(7)l +le v(y)l 2 dy}< R, Vte

2B, ()

3.7)

Proof Combining with (3.2), (3.4) with =0, we get
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9 e+ % v 2< 200 gi? 20,
dt 2 2

integrate on [z,+w), we can easily conclude that (3.7) is true.

U

Lemma 3.4. Under the assumptions (1.2)—(1.7),

geH'C?, for any initial data z(z)eB,(R,)cH}, there
exists p, >0, such that
1

eI A2l 2 4l Aull °< p, V7 <t. (3.8)

Proof Multiplying (1.1) by Av=Au +5Au and

integrating over0 ", we obtain
d 1 1 1
a(g(t)u A2 2l Aull 2+ A2ull 2) =& (0 A2MI 2
1
+2(a = Sl AMI 2 =25 (ax — Se(t))(u, Av) + 251 Aull 2
1
+261 A2ull 2 +2( f (x,u), Av) = 2(g, Av).
By (3.8) Holder, Young inequalities

1 1
21t (ou), Ayl 2 Az + 200 payy
OX ou

1 1 2 1

1 1 1 1
<2] f/(u) 4 Azl 4 szus%u Aadl +=1 A2l ?,
o

1 1
29, A2 (I s, AZ\AIS%!I A2vllz+§|| 90N %, e,

and

1 1
261 Aull 2 +(20r = 28l A2l 2 =" ()l A2vll 2 —
1
28(ar — Se(t))(u, A?v)

1 1 1
> 261 Aull 2 +(2a - 28e(E))l A2l 2 —[%u A2l 2 425%all A2ull 2]
3 L 1
>261 Aull 2 +(§a — 26 A2l 2 —25%all Azull 2

1 1 1
> 51 AUl +e(tll A2l 2)+all A2l 2 —25%ll A2l 2.

(3.9)
Combining with the above inequality, we get
1 1 1
%[g(t)ll A2l 2 4l Aull 2+ Azull 21+ (@l A2l 2
1 1
A Al 221 Al 2)+%|| Al 2 (3.10)

<& g1
a

HY(@?)

417 z
+(—+28%a)l Azl ?,
[04
applying the Gronwall Lemma to (3.10) over [,t]and

combining with the above equality we ha
1 E

g A2l 4l Aull 2 +21 Azull 2

<e gl A%VT" 2l gl Z 2l A%uoll 1+

(gll ol sy +(47|2+ 25%a)-RE)

<pn

29
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2
where p, = Z(iil gl ? +(ﬂ +258%a)-R?) . Then the proof is
(04 a

H(0?)

complete. 0
Lemma 3.5. Under the assumptions (1.2)—(1.7), for

p,>0in Lemma 3.4, there exists R = max{p,, 22}, such
a
that

L w L
sup {e(®I A2l ? HI Aull 2 +J. I A2v(y)ll 2 dy}
268, (R,) i
<R,Vtel.

(3.12)

Proof Integrating (3.10) on [r,t]with =0, we get
1
ﬁl A2y(y)l 2 dySE-pl>0. Then together with Lemma 3.4
v [24

we conclude that (3.11) is true. 0

Lemma 3.6. Under the assumptions (1.2)—(1.7),
gel?(©?), for anyo>0, there existT,=T,(6), ast>T, and
K =K(0) >0, such that

[ EOIVE+IVuP +|uP)x <Co, V=T, k = K(9),
where O ={x e ":|x|>k}, C is a positive constant.
Proof Choosing a smooth function ¢ such that

0<0(s)<1, foranysell *, and
0(s)=0for0<s<1,6(s) =1, fors>2.

Then there exists a positive constant C, , such that

max{| &'(s)|,| "(6) [} < C, for any s el * .

| X[

kZ

Multiplying (1.1) by #(*=-)vand integrating overo?,
we obtain

d |x[°
E[ID 0

W), e('kLZ') ') | V]2 dx — 28 (a — de(t))

) (€@ VI +2 u)dx] +(2(a - (1)

| X[

JI‘HQ( k2

+251L o(

2
)-u-vdx—zj n@(l :J )AU - vdX (3.12)

| x
k

Yo
) uf dx

- 2f, ol :(‘2'2) Fxupvx+2] o )k(2|2)g(x)vdx.

Now we deal with each term in the above equation:
First we have
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2
X
| 2| )AU - vdx

206,

d | x[*
=) 0%

2.,

+25j ne(@) [Vul? dx -

X[

) VUl dx+26] oc, )| Vu P dx

| x[*
“al o
4\/'c0

IXI

2|X|Vu vol Ly vu e dx

kIIN/_kIVu|~|v|dx

d

>

T dto
2\/'c

(IXI )| Vu? dx+25j o XL 2|)|Vu| dx

IXI X[

>fj o S VUl dx

_2&%2_2J§c
k °  k

D) [Vul dx+25j oc,

o Wil %,

and

|26 - 8=0)] o( |)<(2|

| X[

szaaj”a( ) lul-[v]dx

|x[ 2 RN
<[00 D) IVE dx+28% .[0(?)|u| dx.

Moreover, we have that

| X[
2 ) f (x,u)vdx

2j 0(

(3.13)

(3.14)

(3.15)

s

dt o

YE (x,u)dx + 25] e(lz—f) f (x,u)udx,
and

| x [
o) T (X, u)vdx |

21[.06,

(3.16)

o

<21, 9("" P +2] 9(|X2)|9I dx.

Combining with the above estimates, we obtain

d
R
+5I na(%)q VUl +Auf +&(t) | V] +268 f (x,u)u)dx

< 2\/560
2J’ 2C,

|X| )(|Vu| +A U +e(t) |V +2F (x,u))dx]

IXI

ot

R +26%| g[* dx

o

) uP dx+= j‘ne(
i kI VAV
Letk (6) >0, and any 0<o<1, such that if k >k (o), then

zJ'c

ORZ

holds, and there there existk,(0) >0, such that if k>k, (),

we have

cf ol!

YuP dx <o.

since g e Hy(@ ") , so there existk,(¢) >0, such that

30
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f‘[ (l
hold for any k > k,(9) .
So there exist k, = max{k,(0),k,(0),k; (@)}, if k>k,, we

infer

+A U +e(t)|v[)dx]+

aif ol
5[J,n9(|x|
242€C,

<30 +4|| il 2,

VU +A ul* +&(t)|v[)dx]

By the Gronwall Lemma on [r,t], and Lemma 3.3,

Lemma3.5, we can get
oDyqvu +a 10 +e1vPs

e[ g (| )(IVu, P +Alu, [ +e(t)|v, [)dx

(3.17)
+@ + 2\/k_co I'eﬂs(tfs)\ W 4o

< poe Rgz !

-5(t-1) +%+ 2'\/560
14

so for given 6> 0 above, setting K = K (0) there existT, =T,(0) ,
ast>T,and k > K(0) , we have

2 \
j,ne(| ’k‘l YIVUF +A Ul +e)|vP)des 2
v
Then we obtain
<5 ey,
f 5
where 6 = min{l, 1}. [

4 Existence of the time-dependent global attractor on H,

Theorem 4.1. Under the conditions(1.2)—(1.7), the
processU (t,7):H, — H, generated by problem (1.1) has a
invariant time-dependent global attractor A={A}_ in
HY(C )< 2(03).

In the following, we will obtain the existence of the
time-dependent attractor for system (1.1) by using the
method of asymptotic contractive function. 0
Under assumptions(1.2)—(1.7),

Lemma 4.2. the

g eH'(U%),(u,,u,) be the solution corresponding to initial
data (uy,v]) € B, for the problem (1.1). Then for any k >0and
T (o) > 0 be given, let

Q, ={xe0¥|x|<k},

we can have:
(i) u, »u"—weakly in L*(T,t;L*(Q,)) ;

(i) u, —u; —weakly in L*(T,t; () ;
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(iii) u, —u strongin L*(T,t;L*(Q,)) ;
(iv) u,(T) —>u(m)andu,(t) —u(t) strong in L*(Q,),L*(Q,) .

Proof  From (4.7), (4.11), I ul;+s(EN ul? is

bounded, where the bound depends on theT , furthermore,

Iull? is bounded. Moreover, by (1.2) for fixed

T,& [T t],&(&) is bounded, hencel u,ll*is bounded. Then

according to Alaoglu Theorem, and use the continuous
emdedding H (Q,) & L*(Q,), compact embedding H(Q,)
S Q) He(@) LR,
U

the result can be obtained.

4.1 A priori estimates
Let (u, (), u, (1)) be the corresponding solution of (1.1) with

initial datum (u}(z),v(z)) e{B.}... ,
w= ul(t) *uz(t)v
then w(t) satisfies

{g(t)a)tt +aw, To+lo+ f(xu)- f(xu,)=0,t>T, 1)

(X, T) =Ug(T) =g (T), 0, (X, T) = v (T) = V5 (T),
Denote

Ew(t)zéﬂ VW2 A w2 el wl 2.
Taking the inner product (4.1) with w, in L*(C *) we find
CEO+ S w1 )= F(ru)w (@) =0, (42)
Integrating (4.2) over [s,t], we have

£'(¢)

B0 ~E,(5) + [ (= 2200 wen * de

[ 0u) = U, w (£)dE =0,

where T <s<t .

(4.3)

For L<2a , where L is the bound of
£(t),&'(t) , then we can get

[N a(@n? de<E,M [ (Fixu)— f(0u,) a(E)ds (4.4)

Then multiplying (4.1) by , and integrating over 00 3 x[T ,t],
we obtain
jT‘u Vol 2+l o)l 2)ds + &(t) (), ot))
=(e(May(T), o(T)) - L‘ (a—&'(s)) @ (s), (s))ds
el @ (M2 ds— [ (F(w) - F(xu,),(s)ds.
Therefore, from (4.4) and (4.5) , yields
Zﬁ E,(s) < 2Ew(l')—2_|:(f(x,u1)— f (x,U,), ,(s))ds
*Ll (a = &'(s))X e (s) w(s))ds — e(t) e, (1), o(t))

42 (T )@ (1), o) - [[(F ) - F(xu,),as)ds
Integrating (4.3) over[T,t], we have

(4.5)

(4.6)

31
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‘9/(25))" @ (N2 déds

t-TE,®O+[ [ (a- @7

=[P @) - f () U, @ () déds + [ E,(s)ds,
together with (4.6), there holds

(t-T)E ()< Ewcr)+§<s(T)wt(r).w(r)>
-2 0a0.00) - [ (@ - )X E).0o)s
=2 ) - Txw), o)

[ ) - T, (s)ds
) (0 (), @ (£)dds.

(4.8)

Set
7 ((ul(T) Vo(T)), (U5 (T),v5 (T)))

= 2(t T)< () @

[ u) — £ (xu,), 0(s))ds

e T)j (@—&(S))m,(s) o(s))ds

(4.9)

2(t Ty
fﬁ [ () = f(xu,),@(s)ds
@) - Fu@). e déds,
and

Cu =E.M)+ 3 (eMaD).o(), (4.10)

then we have

(4.11)

E®= 1 (Up(T), Vo (T)), (U (T), v (T))).

4.2 Asymptotically compact
Theorem 4.3. Under the assumption (1.2) — (1.7), then
the process{U (t,z)}is a asymptotic contractive process, that

is, for any fixedtel , bounded sequence{x},, < X, and

any {r,},c0™ ,
{U(t,z,)x .}, is precompact in H'@O ") x L2([C ") .
Proof Let

with 7, >- as n—« , sequence

vz (U (1) Vo (7)), (Ug (T). Vo (T))) = —

£(t)o, - odx

1
2(t-T) J.Qk

2(t T)J.( - (3)).[ @,(8) - w(s)dxds

[ j (f (x,u) — f(x,u,)) &(s)dxds (4.12)

2(t T)or
_GL sz (f(xu) = f(x,U,)) - @,(s)dxds
[, (@) - T (@) (b ds.

From Lemma 3.6, as m,n large enough, and by Holder,

Young inequalities, we can have
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J.Qﬁ e(t)(u, () —u,, (O)u, () —u, ()dx

s (413
<L U (1) = U (O 2 e, () = U, (O @7

and
[, (U ) = Uy (9)(u, () -~y ())dlxdls

' . (4.14)
< supll u, (s)—u,, (S)I Lzmill u,(s)—u, s Lz(slﬁ)S%

Similar as m,n large enough
[, (Fou,) = F(u))(u, (5) — Uy, ())dxds

' (4.15)

o
< _ _ <=
_InguSE‘II U, (8) = Up, () 2 e ! U (8) = U () e < -

Also we can obtain that as m,n large enough

[ 1T @) =Un (DT (0, () - T (1, ()i s

" (4.16)
4
So we can get
wr (U (T), Vo (T)), (up, (T), v (T))) (4.17)

<0+ gy (U (T), Vo (T)), (U (T), v (T)))
Next, for any fixedo>0, and some fixedt, letT <t
such thatt—T so large that
Cu <2
t-T 2

Hence, from definition 3.1, 3.2, we only need to verify that
& in (4.17) is the contractive function for each fixed T .

Now, we will deal with each term in (4.12) one by one.
Firstly, from Lemma 3.2 and (i)—(iv) in Lemma 4.1,
we get

limlim

N—oo M—owo

o, €O, ) —u, O)(u, ) —u, (t)dx =0, (4.18)

lim lim L‘ jg L(Uy, (8) — Uy, (8))(U, (5) —U,,(s))dxds =0, (4.19)

N—00 M—0

N—00 M—0

lim lim jT‘ jQ (f(x,u,)— f(x,u,))u,(s)—u,(s)dxds =0.  (4.20)
Similar to [4,16], we have

lim lim jT‘ [ (Fxu,) = F U, (9) — Uy, (s))dxels =0,

N—oo M—ow

At the same time, for each fixed t

11, (U ) = (ENCF (6, () = F (x Uy (N | is

bounded, then by the Lebesgue dominated convergence
theorem we have

lim tim [ 7], (U, €)=ty (D(F (.U, (£) ~ F (x,u, (£))cxdds

n—m m—w

[ timtim [ (U, €)= Uy (EDCF (6, () = (U () )ds
0

N—00 M—w0

(4.21)

32

ISSN: 2394-3661, Volume-8, Issue-6, June 2021

Hence, collecting all (4.18)—(4.21), we get that ¢ is the
contractive function, so ¢! is asymptotic contractive function,
then from (4.21) we know that the process is asymptotical
contractive process. U

Proof of Theorem 4.1
and Theorem 4.3, Theorem 2.9 we can easily obtain the

From Lemma 3.3—Lemma 3.6,

result. U
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