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1 Introduction 

We onsider the asymptotic behavior of solutions to the 

following equations on 3 :    
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  (1.1) 

where ( , )u x t is an unknown function, 0, ( )t    is a 

decreasing bounded function and 

 lim ( ) 0. 
t

t


   (1.2) 

Especially, there exists a constant 0L  such that 

 sup[| ( ) | | ( ) |] .
t

t t L 


    (1.3) 

The nonlinear term 4( , ) ( )f x s C with 2( , ) ( )f x C  for 

every fixed 3x , and satisfies 
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3 0( ( , ) ( ,0)) , ,| | 0,f x s f x c s s x r        (1.7) 

where
10, 0,1,2,3,ic i   is the first eigenvalue of the 

operator .A    

Equation (1.1) can be seen as a nonlinear damped wave 

equation with time-dependent speed of 

Tingting Hu, School of Mathematics and Statistics, Northwest Normal 

University, Lanzhou, Gansu , China, 18093364636. 

Tingting Liu, School of Mathematics and Statistics, Northwest Normal 

University, Lanzhou, Gansu , China, 18093364636. 

Qiaozhen Ma, School of Mathematics and Statistics, Northwest 

Normal University, Lanzhou, Gansu , China, 13659416525. 

propagation
1

( )t
. Besides, it can also be regarded as a 

model for the thermal evolution in ahomogeneous isotropic 

(rigid) heat conductor according to the Maxwell-Cattaneo 

law [8] (see also [12,  AppendixB]), with ( )t representing 

a time-dependent relaxation parameter. 

When  is only a positive constant in (1.1), the 

asymptotic behavior of solutions to equation (1.1) on 

bounded domains has been the object of extensive studies 

since the eighties (see,e.g. [8 − 16]). 

For equation (1.1), in [1], Conti, Pata and Temam 

presented a notion of time-dependent attractor exploiting 

the minimality with respect to the pullback attraction 

property, and constructed a sufficient condition proving the 

existence of time-dependent attractor based on the theory 

established by Plinio, Duane and Temam([5]). Meanwhile, 

within the new framework, on bounded domain, the authors 

studied the following weak damped wave equations with 

time-dependent speed of propagation 

 3( ) ( ) ( ), ,tt tt u u u f u g x x        (1.8) 

in particular, they proved that the time-dependent global 

attractor of (1.8) converged in a suitable sense to the 

attractor of the parabolic equation ( ) ( )tu u f u g x   

when ( ) 0t  as t  ([2]). Successively, in[3], they 

continued to show the existence of an invariant 

time-dependent global attractor to the following specific 

one-dimensional wave equation

( ) [1 ( )] ( ) ,tt xx tt u u f u u f u h       which converges in 

suitable sense to the classical Fourier equation. 

Recently, Meng et al. investigated the long-time 

behavior of the solution for the wave equation with 

nonlinear damping ( )tg u on the time-dependent space, in 

which they found a new technical method verifying 

compactness of the process via defining the contractive 

functions, see [6]. In [7], Meng and Liu also showed the 

necessary and sufficient conditions of the existence of 

time-dependent global attractor borrowed from the ideas in 

[17]. 
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However, all researches about the time-dependent 

attractor were on bounded domain. In the recent, the authors 

gave a method called”asymptotic contractive process”to 

prove that the process is pullback asymptotic compactness 

on unbounded domian ([18]).  So in this paper, we 

exploiting this new method to show the existence of 

time-dependent attractor for (1.1) on unbounded domain. 

The rest of this article consists of four Sections. In the 

next Section, we define some functions sets and iterate 

some useful lemmas; in Section 3, we introduce the concept 

of asymptotic contractive process and a technique for 

verifying asymptotic compactness for the process is 

proposed; finally, dissipativity, tail estimate and the 

existence of the time-dependent global attractor is obtained 

on 3 in Section 4. 

2 Preliminaries 

Now we recall some basic notations and abstract 

results in[1,6,18], which are necessary for getting our main 

results. 

2.1 Notations. 

Without loss of generality, set 2H ( )nL , endowed with the 

inner product ,  and norm ‖ ‖ , respectively. For 0 2s  , 

we define the hierarchy of nested Hilbert spaces 

22 2 2 2 2H H ( ) D( ), , , , , .
s s s s s

s s n

s sA w v A w A v w A w A w         ‖ ‖  

Now, for t and 0 2s  , write the following 

symbols, 
1H Hs s s

t

 H , 

with the norm 

2 2 2 2

1( , ) ( )s s
t t

t s t sz u u u t u  
H H

‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ . 

The letter s is always omitted whenever zero. Especially, we 

consider the time-dependent phase space 
1H Ht  H , 

with the norm 

2 2 2 2 2 2 2

2( , ) ( ) ( )
t tt t tz u u u t u u u t u       H H‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ . 

For every t , let
tX be a family of normed spaces, we 

introduce the   ball of
tX  

( ) { : }
tt t Xz X z   B ‖ ‖ . 

We denote the Hausdorff semi-distance of two (nonempty) 

sets , tB C X by 

( , ) sup ( , ) supinf
t tt X X

y Cx B x B

B C dist x C x y
 

  ‖ ‖ . 

For any given 0ò , the ò neighbourhood of a set
tB X is 

defined as 

( ) { | } { ( )}
tt t X t

x B x B

B y X y x x
 

     BòO ò ò‖ ‖ . 

2.2 Some concepts and abstract results. 

Definition 2.1. ([1]). Let { } 0t tX   be a family of 

normed spaces. A process is a two-parameter family of 

mappings { ( , ) : , }tU t X X t    with properties 

( ) ( , )i U Id   is the identity on ,X   ; 

( ) ( , ) ( , ) ( , ),ii U t s U s U t t s       

Definition 2.2. ([1]). A family { }t tC C of bounded 

sets
t tC X is called uniformly bounded if there exists a 

constant 0  such that ( ),t tC t  B . 

Definition 2.4. ([1]). A (uniformly bounded) family

{ }t tK K is called pullback attracting if for all 0ò ,the 

family{ ( )}t t tK 

òO is pullback absorbing. 

Definition 2.5. ([1]). The time-dependent global 

attractor for ( , )U t  is the smallest family { }t tA A with the 

following properties: 

(i) Each
tA compact in

tX ; 

(ii) A is pullback attracting, namely, it is uniformly bounded 

and the limit 

lim ( ( , ) , ) 0,t tU t C A


 


  

holds for every uniformly bounded family { }t tC C and 

every t . 

Theorem 2.6. ([1]). The time-dependent attractor A

exists and it is unique if and only if the process ( , )U t  is 

asymptotically compact, namely, the set 

{ { } : , } .t t t tK K X compact pullbackattracting   K K K

   
Definition 2.7. ([17]). Let{ }t tX 

be a Banach space and

{ }t tC C be a family of uniformly bounded subset of

{ }t tX 
. We call a function ( , )t

   defined on{ } { }t t t tX X 

to be a asymptotic contractive function on
t tC C , if for any 

t and any sequence
1{ } Cn n tx 

  , such that for any 0ò , 

there is a subsequence
1 1{ } { }

kn k n nx x 

  satisfying: 

( , ) ( , ),
k l k l

t t

n n n nx x x x   ò  

where 

lim lim ( , ) 0, .
k l

t

n n
k l

x x t 
 

   

Definition 2.8. ([17]). Let ( , )U   be a process on{ }t tX 

and for any 0ò there exist ( ) , ( )t

T TT t C   Cò , such that 

( , ) ( , ) ( , ), , ,
t

t

X T TU t T x U t T y x y x y C    ò‖ ‖  

for any fixed t . Then ( , )U   is called asymptotic 

contractive process.  
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Theorem 2.9. ([17]). Let ( , )U   be a process in a family 

of Banach space{ }t tX 
. Then ( , )U   has a time-dependent 

global attractor {A }t t

 

U in { }t tX 
provided that the 

following conditions hold true: 

(i) ( , )U   has a pullback absorbing family { }t tB B ; 

(ii) ( , )U   is pullback asymptotic contractive process on
tB . 

Let 

0
( , ) ( , ) .

u

F x u f x y dy   

Lemma 2.10. ([10,11]). From (1.4), (1.6)−(1.7), for

0 min{1, }   , there exist ( ) 0, ( ) 0( 1,2)c i   ñ , such 

that the following inequalities hold for every 1Hu :  

   

 22 ( , ),1 ( ),F x u u c     ‖ ‖   (2.1) 

 2 2( , ), ( ) ( ).
2

f x u u u u c


      ñ‖ ‖ ‖ ‖   (2.2) 

3 Dissipativity 

Global existence of solution u to (1.1) is classical, by 

using the standard Galerkin approximation method ([1, 12, 

16]), so we only give the following results and omit the 

proof. 

Lemma 3.1. Under the assumptions(1.2)−(1.7), for 

every pair of initial data z H , 2 3( )g L , there exists a 

unique solution ( ) ( , )tz t u u of problem (1.1) in space
tH and 

satisfy 

1([ , ]; ) ([ , ); ).t tz C t L t  H H  

Furthermore, let ( )iz  H be the initial data such that

( ) ( 1,2)iz i


  H‖ ‖ , and ( )iz t be the solution of problem 

(1.1). Then there exists ( ) 0K K   , such that 

( )

1 2 1 2( ) ( ) ( ) ( ) t, .
t

K tz t z t e z z


       H H‖ ‖ ‖ ‖   (3.1) 

Lemma 3.2. Under the assumptions(1.2)−(1.7), 
2 3( )g L , for any initial data

0( )z   B H , there exists

0  , such that 

( , ) ( ) , .U t z t


     H‖ ‖  

Proof Multiplying (1.1) by
tv u u  and integrating 

over 3 , we obtain 

( ) ( ) 0,
d

E t I t
dt

    (3.2) 

where 

2 2 2( ) ( ) 2 ( , ),1 2 , ,E t u u t v F x u g u          ‖ ‖ ‖ ‖ ‖ ‖  

2 2 2( ) (2( ( )) ( )) 2 2

2 ( ( )) , 2 ( , ), 2 , ,

I t t t v u u

t u v f x u u g u

    

    

     

         

‖ ‖ ‖ ‖ ‖ ‖
 

integrating (3.2) over [ , ]t , there holds 

 ( ) ( ) ( ).
t

E t I s ds E


     (3.3) 

Let
4 ( )

0 min{ , }
6 2L

  





 

ñ
, such that 

23
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           ñ  

then by (2.2), Hölder, Young inequalities, we obtain 

 

2 2 2

2 2 2 2 2

2

2 2 2 2

2

2

2 2 2 2 2

2

( ) (2 ) 2 ( ( )) (2 2 ( ))

2
( ) ( ) 2

2

3
( 2 ( ) ) ( 2 ( ))
2

2
2

2
( ( ) ) 2 ,

2

I t u u t v

v u u g c

u u t v

g c

u u t v v g c

      

 
   



       






 
  



      

    

      

 

      

ñ

ñ

‖ ‖ ‖ ‖ ‖ ‖

‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖

‖ ‖ ‖ ‖ ‖ ‖

‖ ‖

‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖

 (3.4) 

combining with (2.2) there holds 
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 (3.5) 

Together with (3.3), (3.4)−(3.5) it follows that 
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  (3.6) 

where 2 2

1 1 2 2

4 2
( ), 2m g c m g c




 
   ‖ ‖ ‖ ‖ . So, for any

2
0

m

v



 , there exists

0t  such that 

2 2 2

0 0 0 0 0( ) ( ) ( ) ( ) .u t u t t v t    ‖ ‖ ‖ ‖ ‖ ‖  

As a result, let
0( , )t

t

B U t B





 , where 

2 2

0 0 1 0 1 1 0{( , ) : ( ) },B u u u u      H ‖ ‖ ‖ ‖  

then
tB is a bounded absorbing set for process{ ( , )}U t  . 

On the other hand, from the above discussion, there 

exist a positive constant  such that 

2 2

1 0t( ) , .tu t u t      ‖ ‖ ‖ ‖                    

From Lemma 4.2, we can get the following 

conclusion: 

Lemma 3.3. Under the assumptions(1.2)−(1.7), for

1 0  in Lemma 4.2, such that
1{ ( )}t  BB is a 

time-dependent absorbing sets for the process { ( , )}U t 

associated with (1.1) then for some
0 0R  , there have 

 
1

2

0
( )

sup { ( , ) ( ) ( ) } ,
t

z

U t z v y dy R t




 




   
B

H‖ ‖ ‖ ‖   (3.7) 

Proof Combining with (3.2), (3.4) with 0  , we get 
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2 2

2

2
( ) 2

2
,

d
E t v g c

dt

 



  ‖ ‖ ‖ ‖  

integrate on [ , )  , we can easily conclude that (3.7) is true.  

 

Lemma 3.4. Under the assumptions (1.2)−(1.7), 

1 3( )g H , for any initial data 1

0( ) ( )z R   B H , there 

exists
2 0  , such that 
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integrating over n , we obtain 

1 1 1
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By (3.8) Hölder, Young inequalities 
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Combining with the above inequality, we get 
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applying the Gronwall Lemma to (3.10) over [ , ]t and 

combining with the above equality we ha
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where 1 3

2
2 2 2

1 0( )

4 4
2( ( 2 ) )
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l
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   ‖ ‖ . Then the proof is 

complete.                                       

Lemma 3.5. Under the assumptions (1.2)−(1.7), for

2 0  in Lemma 3.4, there exists 1
1 2

2
max{ , }R
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that 
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  (3.11) 

Proof Integrating (3.10) on [ , ]t with 0  , we get

1

22
1

2
( ) 0A v y dy








   ‖ ‖ . Then together with Lemma 3.4 

we conclude that (3.11) is true.                      

Lemma 3.6. Under the assumptions (1.2)−(1.7),
 

2 3( )g L , for any 0ò , there exist
1 1( )T T ò , as

1t T and

( ) 0K K ò , such that 

2 2 2

1( ( ) | | | | | | ) , , ( )t ,
c
k

t v u u dx C T k K


       ò ò  

where { :| | }c n

k x x k    , C is a positive constant. 

Proof Choosing a smooth function  such that

0 ( ) 1s  , for any s  , and 

( ) 0 0 1, ( ) 1, 2.s for s s fors       

Then there exists a positive constant 0C , such that

0max{| ( ) |,| ( ) |}s C     for any s  . 

Multiplying (1.1) by
2

2

| |
( )

x
v

k
 and integrating over 3 , 

we obtain 
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 (3.12) 

Now we deal with each term in the above equation: 

First we have 
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Moreover, we have that 
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Combining with the above estimates,  we obtain 
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Let
1( ) 0k ò , and any 0 1 ò , such that if 

1( )k k ò , then 

20
0

2 2
,

C
R

k
 ò  

holds, and there there exist
2( ) 0k ò , such that if 

2( )k k ò , 

we have 

2
2

2

| |
( ) | | .

n

x
C u dx

k
  ò  

since 1

0( )ng H , so there exist
3( ) 0k ò , such that 

2
2
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( ) | | ,

n

x
g dx
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 ò  

hold for any
3( )k k ò . 

So there exist
0 1 2 3max{ ( ), ( ), ( )}k k k k ò ò ò , if 

0k k , we 
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By the Gronwall Lemma on [ , ]t , and Lemma 3.3, 

Lemma3.5, we can get 
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ò

ò

‖ ‖

 (3.17) 

so for given 0ò above, setting ( )K K ò there exist
1 1( )T T ò , 

as
1t T and ( )k K ò , we have 

2
2 2 2

2

| | 6
( )(| | | | ( ) | | ) .

n

x
u u t v dx

k
  


   

ò
 

Then we obtain 

2 2 2 6
(| | | | ( ) | | ) ,

ˆ
c
k

u u t v dx C


    
ò

ò  

where ˆ min{1, }.                                  

4 Existence of the time-dependent global attractor on
tH  

Theorem 4.1. Under the conditions(1.2)−(1.7), the 

process ( , ) : tU t  H H generated by problem (1.1) has a 

invariant time-dependent global attractor { }t tA A in

1 3 2 3( ) ( )H L . 

In the following, we will obtain the existence of the 

time-dependent attractor for system (1.1) by using the 

method of asymptotic contractive function.             

Lemma 4.2. Under the assumptions(1.2)−(1.7),
 

1 3( ),( , )
tn ng H u u be the solution corresponding to initial 

data 0 0( , )n n

Tu v B for the problem (1.1). Then for any 0k  and

( ) 0T ò be given, let 

3{ :| | },k x x k     

we can have: 

(i)
 nu u  weakly in 6( , ; ( ))kL T t L  ; 

(ii) 
tn tu u  weakly in 2( , ; ( ))kL T t L  ; 



International Journal of Engineering and Applied Sciences (IJEAS) 

 ISSN: 2394-3661, Volume-8, Issue-6, June 2021  

                                               31                                      www.ijeas.org 

(iii)
 nu u  strong in 2 2( , ; ( ))kL T t L  ; 

(iv)
 

( ) ( )nu T u T and ( ) ( )nu t u t strong in 2 4( ), ( )k kL L  . 

Proof  From (4.7), (4.11),
 

2 2

2 ( )
tn nu u ‖ ‖ ‖ ‖ is 

bounded, where the bound depends on the T , furthermore, 

2

2nu‖ ‖ is bounded. Moreover, by (1.2) for fixed

, [ , ], ( )T T t   is bounded, hence 2

tnu‖ ‖ is bounded. Then 

according to Alaoglu Theorem, and use the continuous 

emdedding 1

0( )kH  ↪ 6 ( )kL  , compact embedding 1

0( )kH 

↪ 2 ( )kL  , 1

0( )kH  ↪ 4 ( )kL  , the result can be obtained.                               

 

4.1 A priori estimates 

Let ( ( ), ( ))
ti iu t u t be the corresponding solution of (1.1) with 

initial datum 0 0( ( ), ( )) { }i iu v B    , and 

1 2( ) ( ),w u t u t   

then ( )w t satisfies 

1 2

1 2 1 2

0 0 0 0

( ) ( , ) ( , ) 0, ,

( , ) ( ) ( ), ( , ) ( ) ( ),

tt tt

t

t f x u f x u t T

x T u T u T x T v T v T

    

 

      


   
  (4.1) 

Denote 

2 2 21
( ) [ ( ) ].

2
w tt w w t w    E ‖ ‖ ‖ ‖ ‖ ‖  

Taking the inner product (4.1) with
tw in 2 3( )L we find 

2

1 2

( )
( ) ( ) ( , ) ( , ), ( ) 0.

2
w t t

d t
t w f x u f x u w

dt


 


     E ‖ ‖  (4.2) 

Integrating (4.2) over [ , ]s t , we have 

 

2

1 2

( )
( ) ( ) ( ) ( )

2

( , ) ( , ), ( ) 0,

t

w w t
s

t

t
s

t s w d

f x u f x u w d

 
  

 


  

    





E E ‖ ‖
  (4.3) 

where T s t  . For 2L  , where L is the bound of 

( ), ( )t t   , then we can get 

2

1 2( ) ( ) ( ) ( , ) ( , ), ( ) .
t t

t t
T T

d T f x u f x u ds           E‖ ‖  (4.4) 

Then multiplying (4.1) by , and integrating over 3 [ , ]T t , 

we obtain 

 

2 2

2

1 2

( ( ) ( ) ) ( ) ( ), ( )

( ) ( ), ( ) ( ( )) ( ), ( )

( ) ( ) ( , ) ( , ), ( ) .

t

t
T

t

t t
T

t t

t
T T

s s ds t t t

T T T s s s ds

s s ds f x u f x u s ds

     

      

  

    

      

    





 

‖ ‖ ‖ ‖

‖ ‖

  (4.5) 

Therefore, from (4.4) and (4.5) , yields 

 

1 2

1 2

2 ( ) 2 ( ) 2 ( , ) ( , ), ( )

( ( )) ( ), ( ) ( ) ( ), ( )

( ) ( ), ( ) ( , ) ( , ), ( )

t t

t
T T

t

t t
T

t

t
T

s T f x u f x u s ds

s s s ds t t t

T T T f x u f x u s ds

  

      

   

    

      

      

 





E E

  (4.6) 

Integrating (4.3) over [ , ]T t , we have 

2

1 2

( )
( ) ( ) ( ) ( )

2

( , ( )) ( , ( )), ( ) ( ) ,

t t

t
T s

t t t

t
T s T

t T t d ds

f x u f x u d ds s ds





 
   

    


  

     

 

  

E

E

‖ ‖
  (4.7) 

together with (4.6), there holds 

 1 2

1 2

1 2

1
( ) ( ) ( ) ( ) ( ), ( )

2

1 1
( ) ( ), ( ) ( ( )) ( ), ( )

2 2

1
( , ) ( , ), ( )

2

( , ) ( , ), ( )

( , ( )) ( , ( )), ( ) .

t

t

t t
T

t

T

t

t
T

t t

t
T s

t T t T T T T

t t t s s s ds

f x u f x u s ds

f x u f x u s ds

f x u f x u d ds

    

      





    

    

      

   

   

   







 

E E

  (4.8) 

Set 

1 1 2 2

0 0 0 0

1 2

1 2

1 2

(( ( ), ( )),( ( ), ( )))

1 1
( ) , ( ( )) ( ), ( )

2( ) 2( )

1
( , ) ( , ), ( )

2( )

1
( , ) ( , ), ( )

1
( , ( )) ( , ( )), ( )

t

T

t

t t
T

t

T

t

t
T

t t

t
T s

u T v T u T v T

t s s s ds
t T t T

f x u f x u s ds
t T

f x u f x u s ds
t T

f x u f x u d d
t T



      





    

       
 

   


   


   








  ,s

 (4.9) 

and 

 
1

( ) ( ) ( ), ( ) ,
2

M tC T T T T      E   (4.10) 

then we have 

 1 1 2 2

0 0 0 0( ) (( ( ), ( )),( ( ), ( ))).tM
T

C
t u T v T u T v T

t T
  


E   (4.11) 

4.2 Asymptotically compact 

Theorem 4.3. Under the assumption (1.2) − (1.7), then 

the process{ ( , )}U t  is a asymptotic contractive process, that 

is, for any fixed t , bounded sequence 1{ }
nn nx X



  and 

any
1{ } t

n n  

  , with
n  as n , sequence

1{ ( , ) }n n nU t x 

 is precompact in 1 2( ) ( )n nH L . 

Proof  Let 

   

1 1 2 2

0 0 0 0

1 2

1 2

1

1
(( ( ), ( )),( ( ), ( ))) ( )

2( )

1
( ( )) ( ) ( )

2( )

1
( ( , ) ( , )) ( )

2( )

1
( ( , ) ( , )) ( )

1
( ( , ( ))

k

k

k

k

k

t

T t

t

t
T

t

T

t

t
T

t t

T s

u T v T u T v T t dx
t T

s s s dxds
t T

f x u f x u s dxds
t T

f x u f x u s dxds
t T

f x u f
t T

   

   

















  


  


  


  


 




 

 

 

   2( , ( ))) ( ) .tx u dxd ds   

 (4.12) 

From Lemma 3.6, as ,m n large enough, and by Hölder, 

Young inequalities, we can have 
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2 2( ) ( )

( )( ( ) ( ))( ( ) ( ))

( ) ( ) ( ) ( ) ,
4

c t t
k

c c
t t k k

n m n m

n m n mL L

t u t u t u t u t dx

L u t u t u t u t




 

 

   


ò

‖ ‖ ‖ ‖
  (4.13) 

and 

2 2( ) ( )

( ( ) ( ))( ( ) ( ))

sup ( ) ( ) ( ) ( ) .
4

c t t
k

c c
t t k k

t

n m n m
T

n m n mL L
T s t

u s u s u s u s dxds

u s u s u s u s



 
 

 

   

 
ò

‖ ‖ ‖ ‖

  (4.14) 

Similar as ,m n large enough 

2 2( ) ( )

( ( , ) ( , ))( ( ) ( ))

sup ( ) ( ) ( ) ( ) .
4

c t t
k

c c
t t k k

t

n m n m
T

n m n mL L
T s t

f x u f x u u s u s dxds

l u s u s u s u s



 
 

 

   

 
ò

‖ ‖ ‖ ‖

  (4.15) 

Also we can obtain that as ,m n large enough

( ( ) ( ))( ( , ( )) ( , ( )))

.
4

c t t
k

t t

n m n m
T s

u u f x u f x u dxd ds    


 



  
ò

 (4.16) 

So we can get 

1 1 2 2

1 1 2 2

(( ( ), ( )),( ( ), ( )))

(( ( ), ( )),( ( ), ( )))

t

T n n m m

t

T n n m m

u T v T u T v T

u T v T u T v T



 ò
  (4.17) 

Next, for any fixed 0ò , and some fixed t , let T t

such that t T so large that 

.
2

MC

t T




ò
 

Hence, from definition 3.1, 3.2, we only need to verify that

t

T in (4.17) is the contractive function for each fixed T . 

Now, we will deal with each term in (4.12) one by one. 

Firstly, from Lemma 3.2 and (i)−(iv) in Lemma 4.1, 

we get 

 lim lim ( )( ( ) ( ))( ( ) ( )) 0,
t t

k
n m n m

n m
t u t u t u t u t dx

 
    (4.18) 

lim lim ( ( ) ( ))( ( ) ( )) 0,
t t

k

t

n m n m
Tn m

L u s u s u s u s dxds
 

      (4.19) 

lim lim ( ( , ) ( , ))( ( ) ( )) 0.
k

t

n m n m
Tn m

f x u f x u u s u s dxds
 

      (4.20) 

Similar to [4,16], we have 

lim lim ( ( , ) ( , ))( ( ) ( )) 0,
t t

k

t

n m n m
Tn m

f x u f x u u s u s dxds
 

     

At the same time, for each fixed t ,

| ( ( ) ( ))( ( , ( )) ( , ( ))) |
t t

k

t

n m n m
s

u u f x u f x u dxd    


   is 

bounded, then by the Lebesgue dominated convergence 

theorem we have 

 

lim lim ( ( ) ( ))( ( , ( )) ( , ( )))

(lim lim ( ( ) ( ))( ( , ( )) ( , ( ))) )

0.

t t
k

t t
k

t t

n m n m
T sn m

t t

n m n m
T sn m

u u f x u f x u dxd ds

u u f x u f x u dxd ds

    

    

 

 

 

  



  

  

                  (4.21) 

Hence, collecting all (4.18)−(4.21), we get that t

T is the 

contractive function, so t

T is asymptotic contractive function, 

then from (4.21) we know that the process is asymptotical 

contractive process.                               

Proof of Theorem 4.1  From Lemma 3.3−Lemma 3.6, 

and Theorem 4.3,Theorem 2.9 we can easily obtain the 

result.                                          
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